馬達和泵浦系統的數位孿生 ─ 第二版

馬達和泵浦系統的數位孿生 ─ 第二版 發佈日期 2017-05-24


本文原始出處:ANSYS Blog

 

馬達和泵浦系統的數位孿生 第二版 (May 18, 2017)

Digital Twin of a Motor and Pump System – Second Edition

 

大約一年前,ANSYS嵌入系統事業群的技術副總Eric Bantegnie寫了一篇文章介紹ANSYS及其合作夥伴PTCParametric Technology, 參數科技)、NINational Instruments, 美商國家儀器)和HPEHewlett Packard Enterprise, 惠普企業)共同創造了一個泵浦和閥門的數位孿生系統。該團隊在PTC LiveWorx 2016(年度物聯網高峰會)展示了此成果。現在ANSYS很高興地宣布,該團隊持續精進並拓展了更新的版本 除了原本這顆泵浦和閥門的數位孿生系統之外,更加入了馬達和電驅動部份。

 

About a year ago, my colleague, Eric Bantegnie, wrote a blog that described how we, along with our partners PTC, NI and HPE, had created a digital twin of a pump and one of its valves. We showcased this at PTC LiveWorx. I’m happy to announce that work continues with our partners on a new and expanded version of the digital twin of this pump and its valves to its motor and electric drive.

 

為何如此讓人激動而且重要?因為這個加強版的數位孿生展示了多領域系統,包括了流體、電機機械、電磁場和熱傳等物理場,還有對使用者友善的人機界面(HMI, Human Machine Interface),以解決馬達設計人員和操作人員所面臨的挑戰性問題 確認、監控並維持馬達和部件在一定的溫度下,以達到最佳的操作點。為什麼這麼重要?因為馬達和部件的最高工作溫度每升高攝氏10度,就會使馬達壽命縮短一半!

 

Why is this exciting and important? This enhanced digital twin demonstrates a multi-domain system including fluids, electromechanical, electromagnetics and thermal  aspects, coupled with a user friendly Human Machine Interface (HMI),  to solve a challenging problem that faces motor designers and operators — determining, monitoring and maintaining the optimal temperature at which to operate the motor and its components on a consistent basis. Why does this matter? Every 10 degree Celsius increase in operating temperature of the motor and components over their optimum temperatures decreases the life of the motor by half!

 

但是,操作者如何確定馬達是否始終處於最佳溫度並且不會過熱?通常馬達上沒有感測器來提供有關馬達溫度的資訊。操作人員可以透過監控輸入功率、電流和電壓來猜測馬達溫度,但這是一種不精確的方法。當馬達配置在現場時,即使有測量溫度的感測器,它們操作成本高昂,而且數據時常不準確或延遲。

 

But how can an operator determine if the motor is consistently running at its optimum temperature and not overheating? Often there are no sensors on the motor to provide information about the temperature of the motor. Operators can guess at what temperature the motor is by monitoring the input power, current and voltage, but this is an imprecise method.   When motors are deployed in the field, even if there are sensors measuring temperature, they are costly to operate and data is frequently inaccurate or delayed.

 

確定馬達溫度

Determining Motor Temperature

 

數位孿生可以為這個重要問題提供解答,透過確保馬達溫度在所需範圍內,延長馬達的使用壽命,同時維持泵浦的流體動力性能在其最佳效率點附近。它是如何運作的呢?流量和壓力會影響馬達的運作和操作溫度。物理泵連接到由控制器驅動的馬達。使用數位孿生系統,只需要兩個來自感測器的輸入訊號(這兩個訊號分別代表兩個控制泵浦流量的閥之開啟位置),就能模擬整個系統 使我們能夠獲得對泵浦和馬達運行狀況的實用洞見。透過利用嵌入在 CAE 模型中的虛擬感測器(監控點),可大幅減少對物理感測器的需求。使用數位孿生系統和來自泵浦上的兩個感測器的訊號,我們能夠隨時確定馬達溫度,以及不同位置的電流、流量和壓力等物理量資訊。

 

A digital twin can provide answers to this important question, extending the life of the motor by ensuring the motor temperature is within the desirable range while the pump operates at around its best efficiency point. How does this work?  Flow and pressure have an impact on the operation of the motor and the temperature at which it operates. The physical pump is connected to the motor driven by the electrical controller. With the digital twin, only two inputs from two sensors that indicate the opening position of the two flow valves controlling flow rate through the pump, are needed to simulate the entire system — allowing us to gain useful insights into the operating conditions of the pump and motor. By utilizing virtual sensors embedded in simulation models, the need for physical sensors can be drastically reduced. With the digital twin and the information from the two sensors on the pump, we are able to determine the temperatures of the motor in addition to the current, flow rate and pressure at various locations at all times.  

 

http://www.ansys-blog.com/wp-content/uploads/2017/05/Digital-twin-blog-image.jpg

 

建立和連結數位孿生

Building and Connecting the Digital Twin

 

為了建立數位孿生所需的 CAE 模型並確定馬達的工作溫度,需要一個結合流體、電機機械、電磁場和熱模擬的系統級、多物理方法。請記得泵浦連接到馬達,而馬達是由控制器驅動。

 

In order to create the simulation models necessary to build the digital twin and determine the operating temperature of the motor, a system-level, multi-physics approach that combines fluids, electromechanical, electromagnetics and thermal simulations is necessary. Remember that the pump is connected to the motor and the motor is driven by a controller.

 

除了馬達的馬達模型之外,我們還建構了一個馬達溫度場的降階模型(ROM, Reduced Order Model),其中馬達的輸入為電壓和電流,輸出為溫度。要得到這個降階模型,首先需要對馬達內的部件進行磁路模擬以得到熱源分佈,然後再將這些結果傳給CFD模擬以確定溫度場。在上述過程中,共創建了兩個ROM,第一個用於電磁場分析,第二個用於熱流分析,可以快速預測馬達組件的暫態和未來穩態溫度。

 

In addition to the electromechanical model of the motor, we created a thermal Reduced Order Model (ROM) of the motor with the inputs to the motor being the voltage and current, and the output being the temperature. This requires first an electromagnetic simulation of the components within the motor to calculate the heat sources within the motor itself. Then, these results are passed to a CFD simulation to determine the cooling aspects. In the above process, two ROMs are created, the first one for motor electromagnetics and the second one for cooling, enabling quick predictions of both the transient and future steady state temperatures of the components of the motor.

 

http://www.ansys-blog.com/wp-content/uploads/2017/05/SysModel.jpg

整合多物理場和人機介面的數位孿生系統層級模型

The system-level model of the digital twin incorporates multiple physics and an HMI.

 

設計好的數位孿生系統一旦準備就緒,我們可以將其連接到物理泵浦,並收集感測器數據,以確定泵浦和馬達的運行狀況,並根據需求進行調整,以保持最佳馬達溫度。然而我們可以做的更多:當我們將數位孿生系統與真實物理系統分離時,我們可以使用ANSYS模擬和HMI人機介面來測試虛擬泵浦和馬達的不同情況和操作條件。透過數位操作泵浦上的閥門,我們可以立即看到這些變化如何影響馬達的轉子和馬達內的軸承的流量、排放和吸入壓力、電流和溫度。這允許泵浦操作員執行各種情景測試,使數位版本的馬達泵浦透過其步調找到馬達和泵浦的最佳操作條件,並執行修正措施。

 

Once the as-designed digital twin is ready, we can connect it to the physical pump and gather sensor data to determine the operating conditions of the pump and the motor and make adjustments as needed to maintain optimum motor temperature. But, we can do even more than this. When we disconnect the digital twin from the physical asset, we can use ANSYS simulation and HMI to test different scenarios and operating conditions of the digital pump and motor. By digitally manipulating the valves on the pump, we can immediately see how these changes affect the flow, discharge and suction pressures, current, and temperature of the motor’s rotor cage and the bearings inside the motor. This allows the pump operator to perform what if scenario testing, putting the digital version of the motor-pump through its paces to find optimal operating conditions for both the motor and pump, and perform corrective actions.

 

http://www.ansys-blog.com/wp-content/uploads/2017/05/Motor-Pump-normal2.jpg

正常運作條件

Normal Condition

 

http://www.ansys-blog.com/wp-content/uploads/2017/05/Motor-Pump-overload2.jpg

過熱負載條件

Overheat Condition

 

用數位孿生預測未來

Predicting the Future With Digital Twins

 

數位孿生系統能讓操作人員預測並確認馬達組件的溫度狀態,這是非常有用的資訊,數位孿生扮演了不可或缺的角色。由於馬達組件的熱質量,它們的溫度變化需要時間。舉例來說,如果馬達處於高環境溫度或處於過載狀態,可能要實際發生一段時間後,操作員才會知道馬達部件的溫度正在上升(當然前提是馬達上面有溫度感測器)。如果馬達上沒有溫度感測器,操作員將永遠不會接收到此訊息。透過能夠預測環境溫度、泵浦、流體或流量變化的結果,以及它們如何立即影響馬達及其部件的溫度,操作人員可以及早採取糾正措施,有助於維持馬達及其部件的產品壽命。數位孿生可以實現這一切。

 

The digital twin allows the operator to determine the future state of the motor components’ temperatures too. This is extremely useful information that cannot be determined without the use of a digital twin. Due to the thermal mass of the motor components, it takes time for their temperature to change. For example, if the motor is in an environment with high ambient temperature or in an overload condition, the operator may not know that there will be a temperature spike on the motor components until it actually happens some time later, if there are temperature sensors on the motor. If there are no temperature sensors on the motor, the operator would never receive this information. By being able to predict the results of certain changes in the ambient temperature, pump, fluid or flow and how they will affect the temperature of the motor and its components immediately, the operator can take corrective action early, helping to preserve the life span of the motor and its components. The digital twin enables all of this.

 

ANSYS與合作夥伴們的團隊在今年舉辦的PTC LiveWorx https://www.liveworx.com/ MAY 22 – MAY 25, 2017 | BOSTON, MA )展台上展示了一台真實的電動泵浦數位孿生系統。另外,若想了解更多關於ANSYS如何與PTC合作以實現數位孿生,以及如何透過模擬來解決數位化漸增的挑戰,請參考最新一期的ANSYS Advantage雜誌,以了解更多我們灌注在基於模擬之數位孿生的技術能量。

And learn more about how we are powering simulation-based digital twins in the most recent edition of ANSYS Advantage magazine.

返回列表
Facebook
Youtube
LinkedIn
Facebook
Youtube
LinkedIn
up to top